Reduction of cellular stress is essential for Fibroblast growth factor 1 treatment for diabetic nephropathy

减少细胞压力对于成纤维细胞生长因子 1 治疗糖尿病肾病至关重要

阅读:8
作者:Yanqing Wu, Yiyang Li, Ting Jiang, Yuan Yuan, Rui Li, Zeping Xu, Xingfeng Zhong, Gaili Jia, Yanlong Liu, Ling Xie, Ke Xu, Hongyu Zhang, Xiaokun Li, Jian Xiao

Abstract

Diabetic nephropathy (DN) is one of general and common complication of diabetes, which severely affects the physical and mental health of diabetic patients. Fibroblast growth factor 1 (FGF1), an effective control agent of blood glucose, plays an effective treatment role on diabetes-induced renal injury. But the specific molecule mechanism underlying it is still unclear. Since induction of cellular stress is the main and common mechanism of diabetes-induced complication, we hypothesized that reduction of cellular stress is also the molecular mechanism of FGF1 treatment for DN. Here, we have further confirmed that FGF1 significantly ameliorated the diabetes-induced renal interstitial fibrosis and glomerular damage. The expression levels of collagen and α-smooth muscle actin (α-SMA) also dramatically induced in kidney from db/db mice, but these effects were blocked by FGF1 administration. Our mechanistic investigation had further revealed that diabetes significantly induced oxidative stress, nitrosative stress, and endoplasmic reticulum (ER) stress with upregulation of malondialdehyde (MDA), nitrotyrosine level, ER stress makers and downregulation of antioxidant capacity (AOC). FGF1 treatment significantly attenuated the effect of diabetes on cellular stress. We conclude that FGF1-associated glucose decreases and subsequent reduction of cellular stress is the another potential molecule mechanism underlying FGF1 treatment for DN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。