Mechanistic Insight into Sonoporation with Ultrasound-Stimulated Polymer Microbubbles

超声刺激聚合物微泡声孔效应的机理洞察

阅读:5
作者:Brandon L Helfield, Xucai Chen, Bin Qin, Simon C Watkins, Flordeliza S Villanueva

Abstract

Sonoporation is emerging as a feasible, non-viral gene delivery platform for the treatment of cardiovascular disease and cancer. Despite promising results, this approach remains less efficient than viral methods. The objective of this work is to help substantiate the merit of polymeric microbubble sonoporation as a non-viral, localized cell permeation and payload delivery strategy by taking a ground-up approach to elucidating the fundamental mechanisms at play. In this study, we apply simultaneous microscopy of polymeric microbubble sonoporation over its intrinsic biophysical timescales-with sub-microsecond resolution to examine microbubble cavitation and millisecond resolution over several minutes to examine local macromolecule uptake through enhanced endothelial cell membrane permeability-bridging over six orders of magnitude in time. We quantified microbubble behavior and resulting sonoporation thresholds at transmit frequencies of 0.5, 1 and 2 MHz, and determined that sonic cracking is a necessary but insufficient condition to induce sonoporation. Further, sonoporation propensity increases with the extent of sonic cracking, namely, from partial to complete gas escape from the polymeric encapsulation. For the subset that exhibited complete gas escape from sonic cracking, a proportional relationship between the maximum projected gas area and resulting macromolecule uptake was observed. These results have revealed one aspect of polymeric bubble activity on the microsecond time scale that is associated with eliciting sonoporation in adjacent endothelial cells, and contributes toward an understanding of the physical rationale for sonoporation with polymer-encapsulated microbubble contrast agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。