Initial investigation of acoustic droplet vaporization for occlusion in canine kidney

声滴汽化治疗犬肾脏阻塞的初步研究

阅读:4
作者:M Zhang, M L Fabiilli, K J Haworth, J B Fowlkes, O D Kripfgans, W W Roberts, K A Ives, P L Carson

Abstract

Acoustic droplet vaporization (ADV) shows promise for spatially and temporally targeted tissue occlusion. In this study, substantial tissue occlusion was achieved in operatively exposed and transcutaneous canine kidneys by generating ADV gas bubbles in the renal arteries or segmental arteries. Fifteen canines were anesthetized, among which 10 underwent laparotomy to externalize the left kidney and five were undisturbed for transcutaneous ADV. The microbubbles were generated by phase conversion of perfluoropentane droplets encapsulated in albumin or lipid shells in the blood. A 3.5-MHz single-element therapy transducer was aligned with an imaging array in a water tank with direct access to the renal artery or a segmental artery. In vivo color flow and spectral Doppler imaging were used to identify the target arteries. Tone bursts of 1 kHz pulse repetition frequency with 0.25% duty cycle vaporized the droplets during bolus passage. Both intracardiac (IC) and intravenous (IV) injections repeatedly produced ADV in chosen arteries in externalized kidneys, as seen by B-mode imaging. Concurrent with this in two cases was the detection by pulse-wave Doppler of blood flow reversal, along with a narrowing of the waveform. Localized cortex occlusion was achieved with 87% regional flow reduction in one case using IC injections. Vaporization from IV injections resulted in a substantial echogenicity increase with an average half-life of 8 min per droplet dose. Gas bubbles sufficient to produce some shadowing were generated by transcutaneous vaporization of intrarenal artery or IV-administered droplets, with a tissue path up to 5.5 cm.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。