Enzymatic Synthesis of Poly(glycerol sebacate): Kinetics, Chain Growth, and Branching Behavior

聚甘油癸二酸酯的酶促合成:动力学、链增长和支化行为

阅读:10
作者:Giovanni B Perin, Maria I Felisberti

Abstract

Immobilized Candida antarctica lipase B (CALB)-catalyzed polycondensation of glycerol and sebacic acid at mild reaction conditions resulted in branched poly(glycerol sebacate) (PGS). To understand how PGS chains grow and branch, the kinetics of the CALB-catalyzed polycondensation were studied. The influence of the reaction temperature, solvent, CALB amount, and sebacic acid/glycerol feed ratio on the poly(glycerol sebacate) (PGS) molecular weight, degree of branching, and glyceridic repetitive unit distribution was also investigated. PGS architecture changes from linear to branched with the progression of the reaction, and the branching results from the simultaneous CALB-catalyzed esterification and acyl migration. For reactions performed in acetone at the temperature range from 30 to 50 °C, the apparent rate constant increases from 0.7 to 1.5 h-1, and the apparent energy of activation of 32 kJ mol-1 was estimated. The higher mass average molecular weight (16 kDa) and degree of branching (41%) were achieved using the equimolar sebacic acid/glycerol feed ratio in acetone at 40 °C with a CALB amount of 13.6 wt % and in the presence of the molecular sieves.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。