Induced pluripotent stem cell-derived mesenchymal stem cells deliver exogenous miR-105-5p via small extracellular vesicles to rejuvenate senescent nucleus pulposus cells and attenuate intervertebral disc degeneration

诱导性多能干细胞衍生的间充质干细胞通过小细胞外囊泡递送外源性 miR-105-5p,使衰老的髓核细胞恢复活力并减弱椎间盘退变

阅读:8
作者:Yongjin Sun #, Wenzhi Zhang #, Xu Li

Background

Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) have emerged as a promising new therapeutic strategy for intervertebral disc degeneration (IVDD). However, the drawbacks of MSCs, including their invasive access, the donor age, and their limited proliferative capacity, hinder the quantity and quality of MSC-sEVs. Induced pluripotent stem cell-derived MSCs (iMSCs) provide an indefinite source of MSCs with well-defined phenotype and function. This study aimed to investigate the therapeutic effect of sEVs derived from iMSC (iMSC-sEVs) on IVDD and explore the underlying molecular mechanisms.

Conclusion

iMSC-sEVs could rejuvenate the senescence of NPCs and attenuate the development of IVDD. iMSC-sEVs exerted their anti-ageing effects by delivering miR-105-5p to senescent NPCs and activating the Sirt6 pathway. Our findings indicate that iMSCs are a promising MSC candidate for obtaining sEVs on a large scale, while avoiding several defects related to the present applications of MSCs, and that iMSC-sEVs could be a novel cell-free therapeutic tool for the treatment of IVDD.

Methods

IVDD models were established by puncturing discs from the tails of rats. Then, iMSC-sEVs were injected into the punctured discs. The degeneration of punctured discs was assessed using MRI and HE and immunofluorescence staining. The age-related phenotypes were used to determine the effects of iMSC-sEVs on senescent nucleus pulposus cells (NPCs) in vitro. Western blotting was used to detect the expression of Sirt6. miRNA sequencing analysis was used to find miRNAs that potentially mediate the activation of Sirt6.

Results

After intradiscally injecting iMSC-sEVs, NPC senescence and IVDD were significantly improved. iMSC-sEVs could rejuvenate senescent NPCs and restore the age-related function by activating the Sirt6 pathway in vitro. Further, microRNA sequence analysis showed that iMSC-sEVs were highly enriched in miR-105-5p, which played a pivotal role in the iMSC-sEV-mediated therapeutic effect by downregulating the level of the cAMP-specific hydrolase PDE4D and could lead to Sirt6 activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。