Expression profile-based screening for critical genes reveals S100A4, ACKR3 and CDH1 in docetaxel-resistant prostate cancer cells

基于表达谱的关键基因筛选揭示了多西他赛耐药前列腺癌细胞中的 S100A4、ACKR3 和 CDH1

阅读:5
作者:Sha Zhu, Zhixue Min, Xianli Qiao, Shengxian Chen, Jian Yang, Xiao Zhang, Xigang Liu, Weijie Ran, Renguang Lv, Ying Lin, Jin Wang

Abstract

Docetaxel is a first-line anticancer drug widely used in the treatment of advanced prostate cancer. However, its therapeutic efficacy is limited by its side effects and the development of chemoresistance by the tumor. Using a gene differential expression microarray, we identified 449 genes differentially expressed in docetaxel-resistant DU145 and PC3 cell lines as compared to docetaxel-sensitive controls. Moreover, western blotting and immunohistochemistry revealed altered expression of S100A4, ACKR3 and CDH1in clinical tumor samples. Cytoscape software was used to investigate the relationship between critical proteins and their signaling transduction networks. Functional and pathway enrichment analyses revealed that these signaling pathways were closely related to cellular proliferation, cell adhesion, cell migration and metastasis. In addition, ACKR3 knockout using the crispr/cas9 method andS100A4knockdownusing targeted shRNA exerted additive effects suppressing cancer cell proliferation and migration. This exploratory analysis provides information about potential candidate genes. It also provides new insight into the molecular mechanism underlying docetaxel-resistance in androgen-independent prostate cancer and highlights potential targets to improve therapeutic outcomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。