Autophagic programmed cell death by selective catalase degradation

通过选择性过氧化氢酶降解实现自噬程序性细胞死亡

阅读:6
作者:Li Yu, Fengyi Wan, Sudeshna Dutta, Sarah Welsh, ZhiHua Liu, Eric Freundt, Eric H Baehrecke, Michael Lenardo

Abstract

Autophagy plays a central role in regulating important cellular functions such as cell survival during starvation and control of infectious pathogens. Recently, it has been shown that autophagy can induce cells to die; however, the mechanism of the autophagic cell death program is unclear. We now show that caspase inhibition leading to cell death by means of autophagy involves reactive oxygen species (ROS) accumulation, membrane lipid oxidation, and loss of plasma membrane integrity. Inhibition of autophagy by chemical compounds or knocking down the expression of key autophagy proteins such as ATG7, ATG8, and receptor interacting protein (RIP) blocks ROS accumulation and cell death. The cause of abnormal ROS accumulation is the selective autophagic degradation of the major enzymatic ROS scavenger, catalase. Caspase inhibition directly induces catalase degradation and ROS accumulation, which can be blocked by autophagy inhibitors. These findings unveil a molecular mechanism for the role of autophagy in cell death and provide insight into the complex relationship between ROS and nonapoptotic programmed cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。