Carbofuran affects cellular autophagy and developmental senescence through the impairment of Nrf2 signalling

卡巴呋喃通过破坏 Nrf2 信号传导影响细胞自噬和发育衰老

阅读:5
作者:Alam Khan, Tanjeena Zaman, Talukdar Mohammad Fahad, Tanjima Akther, Md Faruk Hasan, Tarannum Naz, Shuji Kishi

Abstract

Carbofuran is a broad-spectrum synthetic pesticide. Its exposure to non-target mammals affects the biological system through the induction of oxidative stress. Since oxidative stress is a major contributing factor to cellular autophagy and senescence, our present investigation determined the impacts of carbofuran-induced oxidative stress on cellular autophagy and senescence. A transmembrane protein, Spinster homolog 1 (Spns1), is involved in autophagic lysosomal metabolism. Its mutation accelerates the cellular senescence and shortens the lifespan. Using a transgenic zebrafish line, expressing fluorescent microtubules-associated protein 1 light chain 3 (EGFP-LC3) at the membrane of the autophagosome, we found that carbofuran affects autophagic lysosomal biogenesis in wild-type zebrafish and exacerbates autophagic defect in spns1-mutant zebrafish. In real-time mortality study, carbofuran has shortened the lifespan of wild-type fish. Nrf2 is a stress-responsive transcription factor that regulates the expression of antioxidant genes (such as gstp1) in the prevention of oxidative stress-mediated cellular damage. To assess the effect of carbofuran on Nrf2 signalling, we established a dual-monitoring transgenic zebrafish line, expressing gstp1 promoter-driven EGFP and mCherry-tagged Neh2 domain of Nrf2. Our results suggested that the exposure of carbofuran has down-regulated both Nrf2 and Gstp1 expressions. Overall, carbofuran affects cellular autophagy and accelerates senescence by enervating the Nrf2 signalling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。