Biophysical Considerations in the Rational Design and Cellular Targeting of Flexible Polymeric Nanoparticles

柔性聚合物纳米粒子的合理设计和细胞靶向中的生物物理考虑

阅读:5
作者:Samaneh Farokhirad, Sreeja Kutti Kandy, Andrew Tsourkas, Portonovo S Ayyaswamy, David M Eckmann, Ravi Radhakrishnan

Abstract

How nanoparticle (NP) mechanical properties impact multivalent ligand-receptor-mediated binding to cell surfaces, the avidity, propensity for internalization, and effects due to crowding remains unknown or unquantified. Through computational analyses, the effects of NP composition from soft, deformable NPs to rigid spheres, effect of tethers, the crowding of NPs at the membrane surface, and the cell membrane properties such as cytoskeletal interactions are addressed. Analyses of binding mechanisms of three distinct NPs that differ in type and rigidity (core-corona flexible NP, rigid NP, and rigid-tethered NP) but are otherwise similar in size and ligand surface density are reported; moreover, for the case of flexible NP, NP stiffness is tuned by varying the internal crosslinking density. Biophysical modeling of NP binding to membranes together with thermodynamic analysis powered by free energy calculations is employed, and it is shown that efficient cellular targeting and uptake of NP functionalized with targeting ligand molecules can be shaped by factors including NP flexibility and crowding, receptor-ligand binding avidity, state of the membrane cytoskeleton, and curvature inducing proteins. Rational design principles that confer tension, membrane excess area, and cytoskeletal sensing properties to the NP which can be exploited for cell-specific targeting of NP are uncovered.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。