Fast progression of recombinant human myelin/oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis in marmosets is associated with the activation of MOG34-56-specific cytotoxic T cells

重组人髓鞘/少突胶质细胞糖蛋白 (MOG) 诱发的狨猴实验性自身免疫性脑脊髓炎的快速进展与 MOG34-56 特异性细胞毒性 T 细胞的激活有关

阅读:6
作者:Yolanda S Kap, Paul Smith, S Anwar Jagessar, Ed Remarque, Erwin Blezer, Gustav J Strijkers, Jon D Laman, Rogier Q Hintzen, Jan Bauer, Herbert P M Brok, Bert A 't Hart

Abstract

The recombinant human (rh) myelin/oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) model in the common marmoset is characterized by 100% disease incidence, a chronic disease course, and a variable time interval between immunization and neurological impairment. We investigated whether monkeys with fast and slow disease progression display different anti-MOG T or B cell responses and analyzed the underlying pathogenic mechanism(s). The results show that fast progressor monkeys display a significantly wider specificity diversification of anti-MOG T cells at necropsy than slow progressors, especially against MOG(34-56) and MOG(74-96). MOG(34-56) emerged as a critical encephalitogenic peptide, inducing severe neurological disease and multiple lesions with inflammation, demyelination, and axonal injury in the CNS. Although EAE was not observed in MOG(74-96)-immunized monkeys, weak T cell responses against MOG(34-56) and low grade CNS pathology were detected. When these cases received a booster immunization with MOG(34-56) in IFA, full-blown EAE developed. MOG(34-56)-reactive T cells expressed CD3, CD4, or CD8 and CD56, but not CD16. Moreover, MOG(34-56)-specific T cell lines displayed specific cytotoxic activity against peptide-pulsed B cell lines. The phenotype and cytotoxic activity suggest that these cells are NK-CTL. These results support the concept that cytotoxic cells may play a role in the pathogenesis of multiple sclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。