Microarray integrated spatial transcriptomics (MIST) for affordable and robust digital pathology

微阵列集成空间转录组学 (MIST),实现经济实惠且强大的数字病理学

阅读:5
作者:Juwayria, Priyansh Shrivastava, Kaustar Yadav, Sourabh Das, Shubham Mittal, Sunil Kumar, Deepali Jain, Prabhat Singh Malik, Ishaan Gupta

Abstract

10X Visium, a popular Spatial transcriptomics (ST) method, faces limited adoption due to its high cost and restricted sample usage per slide. To address these issues, we propose Microarray Integrated Spatial Transcriptomics (MIST), combining conventional tissue microarray (TMA) with Visium, using laser-cutting and 3D printing to enhance slide throughput. Our design facilitates independent replication and customization in individual labs to suit specific experimental needs. We provide a step-by-step guide from designing TMAs to the library preparation step. We demonstrate MIST's cost-effectiveness and technical benefits over Visium and GeoMx Nanostring. We also introduce 'AnnotateMap', a novel computational tool for efficient analysis of multiple ROIs processed through MIST.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。