Fabrication and characterization of a thick, viable bi-layered stem cell-derived surrogate for future myocardial tissue regeneration

制造和表征一种厚的、可行的双层干细胞衍生替代品,用于未来心肌组织再生

阅读:10
作者:Danielle Pretorius, Asher M Kahn-Krell, Wesley C LaBarge, Xi Lou, Ramaswamy Kannappan, Andrew E Pollard, Vladimir G Fast, Joel L Berry, Alan W Eberhardt, Jianyi Zhang

Abstract

Cardiac tissue surrogates show promise for restoring mechanical and electrical function in infarcted left ventricular (LV) myocardium. For these cardiac surrogates to be usefulin vivo, they are required to support synchronous and forceful contraction over the infarcted region. These design requirements necessitate a thickness sufficient to produce a useful contractile force, an area large enough to cover an infarcted region, and prevascularization to overcome diffusion limitations. Attempts to meet these requirements have been hampered by diffusion limits of oxygen and nutrients (100-200 µm) leading to necrotic regions. This study demonstrates a novel layer-by-layer (LbL) fabrication method used to produce tissue surrogates that meet these requirements and mimic normal myocardium in form and function. Thick (1.5-2 mm) LbL cardiac tissues created from human induced pluripotent stem cell-derived cardiomyocytes and endothelial cells were assessed,in vitro, over a 4-week period for viability (<5.6 ± 1.4% nectrotic cells), cell morphology, viscoelastic properties and functionality. Viscoelastic properties of the cardiac surrogates were determined via stress relaxation response modeling and compared to native murine LV tissue. Viscoelastic characterization showed that the generalized Maxwell model of order 4 described the samples well (0.7 <R2< 0.98). Functional performance assessment showed enhanced t-tubule network development, gap junction communication as well as conduction velocity (16.9 ± 2.3 cm s-1). These results demonstrate that LbL fabrication can be utilized successfully in creating complex, functional cardiac surrogates for potential therapeutic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。