Involvement of PRRSV NSP3 and NSP5 in the autophagy process

PRRSV NSP3 和 NSP5 参与自噬过程

阅读:3
作者:Wei Zhang, Keren Chen, Yang Guo, Yaosheng Chen, Xiaohong Liu

Background

Autophagy is an essential process in eukaryotic cells in which autophagosomes form to deliver cellular organelles and long-lived proteins to lysosomes for degradation. Many studies have recently identified the regulatory mechanisms involved in the interaction between viral infection and autophagy.

Conclusions

The data presented in this study reveal an important relationship between PRRSV NSPs and autophagy and provide new insights that improve our understanding of the involvement of PRRSV NSPs in the autophagy process.

Methods

LC3 turnover and the proteins in the endoplasmic reticulum (ER) stress pathway were investigated using western blot analysis. The formation and degradation of autophagosomes were detected using immunofluorescence staining.

Results

Autophagy was activated by porcine reproductive and respiratory syndrome virus (PRRSV) NSP3, NSP5 and NSP9, which are two transmembrane proteins and an RNA-dependent RNA polymerase, respectively. The formation of autophagosomes was induced by NSP3 and NSP5 and developed from the ER; the fusion of these autophagosomes with lysosomes was limited. Although NSP3 and NSP5 are ER transmembrane proteins, these proteins did not activate the ER stress signaling pathways. In addition, the cytoplasmic domain of NSP3 plays a pivotal role in activating autophagy. Conclusions: The data presented in this study reveal an important relationship between PRRSV NSPs and autophagy and provide new insights that improve our understanding of the involvement of PRRSV NSPs in the autophagy process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。