Sequential Payload Release from Acoustically-Responsive Scaffolds Using Focused Ultrasound

利用聚焦超声从声学响应支架上连续释放有效载荷

阅读:7
作者:Alexander Moncion, Melissa Lin, Oliver D Kripfgans, Renny T Franceschi, Andrew J Putnam, Mario L Fabiilli

Abstract

Regenerative processes, such as angiogenesis and osteogenesis, often require multiple growth factors with distinct spatiotemporal patterns and expression sequences. Within tissue engineering, hydrogel scaffolds are commonly used for exogenous growth factor delivery. However, direct incorporation of growth factors within conventional hydrogels does not afford spatiotemporally controlled delivery because release is governed by passive mechanisms that cannot be actively controlled after the scaffold is implanted. We have developed acoustically-responsive scaffolds (ARSs), which are fibrin scaffolds doped with payload-containing, sonosensitive emulsions. Payload release from ARSs can be controlled non-invasively and on demand using focused, megahertz-range ultrasound. In the in vitro study described here, we developed and characterized ARSs that enable sequential release of two surrogate, fluorescent payloads using consecutive ultrasound exposures at different acoustic pressures. ARSs were generated with various combinations and volume fractions of perfluoropentane, perfluorohexane, and perfluoroheptane emulsions. Acoustic droplet vaporization and inertial cavitation thresholds correlated with the boiling point/molecular weight of the perfluorocarbon while payload release correlated inversely. Payload release was longitudinally measured and observed to follow a sigmoidal trend versus acoustic pressure. Perfluoropentane and perfluorohexane emulsions were stabilized when incorporated into ARSs with perfluoroheptane emulsion. These results highlight the potential of using ARSs for sequential, dual-payload release for tissue regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。