DNA hydroxymethylation age of human blood determined by capillary hydrophilic-interaction liquid chromatography/mass spectrometry

毛细管亲水作用液相色谱/质谱法测定人体血液DNA羟甲基化年龄

阅读:5
作者:Jun Xiong #, Han-Peng Jiang #, Chun-Yan Peng #, Qian-Yun Deng, Meng-Dan Lan, Huan Zeng, Fang Zheng, Yu-Qi Feng, Bi-Feng Yuan

Background

Aging is a complex phenomenon and characterized by a progressive decline in physiology and function of adult tissues. However, it hasn't been well established of the correlation between aging and global DNA methylation and hydroxymethylation that regulate the growth and development of higher organisms.

Conclusions

The global DNA hydroxymethylation represents a strong and reproducible mark of chronological age, which could be potentially applied in health assessment and prevention of diseases. The identification of biological or environmental factors that influence DNA hydroxymethylation aging rate may permit quantitative assessments of their impacts on health.

Results

We developed an on-line trapping/capillary hydrophilic-interaction liquid chromatography/electrospray ionization-mass spectrometry method for ultra-sensitive and simultaneous quantification of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in genomic DNA from human blood. Limits of detection for 5-mC and 5-hmC were 0.04 and 0.13 fmol, respectively. The imprecision and recovery of the method were determined with the relative standard deviations (RSDs) and relative errors being <11.2 and 14.0 %, respectively. We analyzed the contents of 5-mC and 5-hmC in genomic DNA of blood from 238 healthy people aged from 1 to 82 years. The results showed that 5-hmC content was significantly decreased and highly correlated with aging process, while 5-mC only showed slight correlation with age. We then established a DNA hydroxymethylation age model according to 5-hmC content with a mean absolute deviation (MAD) of approximate 8.9 years. We also calculated the mean relative error (MRE) using the predicted ages based on the age model and the chronological ages. The results showed that the MRE was 18.3 % for samples with ages from 20 to 82 years (95 % confidence interval, N = 190). Conclusions: The global DNA hydroxymethylation represents a strong and reproducible mark of chronological age, which could be potentially applied in health assessment and prevention of diseases. The identification of biological or environmental factors that influence DNA hydroxymethylation aging rate may permit quantitative assessments of their impacts on health.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。