BRD7 mediates hyperglycaemia-induced myocardial apoptosis via endoplasmic reticulum stress signalling pathway

BRD7 通过内质网应激信号通路介导高血糖引起的心肌细胞凋亡

阅读:7
作者:Xiao-Meng Wang, Ying-Cui Wang, Xiang-Juan Liu, Qi Wang, Chun-Mei Zhang, Li-Ping Zhang, Hui Liu, Xin-Yu Zhang, Yang Mao, Zhi-Ming Ge

Abstract

Bromodomain-containing protein 7 (BRD7) is a tumour suppressor that is known to regulate many pathological processes including cell growth, apoptosis and cell cycle. Endoplasmic reticulum (ER) stress-induced apoptosis plays a key role in diabetic cardiomyopathy (DCM). However, the molecular mechanism of hyperglycaemia-induced myocardial apoptosis is still unclear. We intended to determine the role of BRD7 in high glucose (HG)-induced apoptosis of cardiomyocytes. In vivo, we established a type 1 diabetic rat model by injecting a high-dose streptozotocin (STZ), and lentivirus-mediated short hairpin RNA (shRNA) was used to inhibit BRD7 expression. Rats with DCM exhibited severe myocardial remodelling, fibrosis, left ventricular dysfunction and myocardial apoptosis. The expression of BRD7 was up-regulated in the heart of diabetic rats, and inhibition of BRD7 had beneficial effects against diabetes-induced heart damage. In vitro, H9c2 cardiomyoblasts was used to investigate the mechanism of BRD7 in HG-induced apoptosis. Treating H9c2 cardiomyoblasts with HG elevated the level of BRD7 via activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and increased ER stress-induced apoptosis by detecting spliced/active X-box binding protein 1 (XBP-1s) and C/EBP homologous protein (CHOP). Furthermore, down-regulation of BRD7 attenuated HG-induced expression of CHOP via inhibiting nuclear translocation of XBP-1s without affecting the total expression of XBP-1s. In conclusion, inhibition of BRD7 appeared to protect against hyperglycaemia-induced cardiomyocyte apoptosis by inhibiting ER stress signalling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。