Susceptibility of High-Manganese Steel to High-Temperature Cracking

高锰钢的高温开裂敏感性

阅读:4
作者:Gabriela Fojt-Dymara, Marek Opiela, Wojciech Borek

Abstract

Tests were carried out on two high-Mn steels: 27Mn-4Si-2Al-Nb with Nb microaddition and 24Mn-3Si-1.5Al-Nb-Ti with Nb and Ti microadditions. High-manganese austenitic steels, due to their good strength and plastic properties belong to the AHSS (Advanced High-Strength Steel) group and are used in the automotive industry. The main difficulties faced during the casting of the steel and hot working are hot cracks, which can appear in the surface of the ingot. Cracks on the edges of the sheet after hot rolling are the reason for cutting the edges of the sheet and increasing production costs and material losses. The main reason for the formation of hot cracks is the decrease in metal ductility in the high-temperature brittleness range (HTBR). The width of the HTBR depends on mechanical properties and microstructural factors, i.e., non-metallic inclusions or intermetallic phases at austenite grain boundaries. In this paper, a hot tensile test was performed. The research was performed on the GLEEBLE 3800 thermomechanical simulator. This test allows us to determine the width of the high-temperature brittleness range (HTBR), the Nil Strength Temperature (NST), the Nil Ductility Temperature (NDT), and the Ductility Recovery Temperature (DRT). Hot ductility was determined from the value of the reduction in area R(A). The obtained results make it possible to determine the temperature of the beginning of hot working from the tested high-Mn steels. Fractographic research enabled us to define mechanisms of hot cracking. It was found that hot cracks form as a result of disruptions in the liquid film on crystals' boundaries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。