Quantifying endodermal strains during heart tube formation in the developing chicken embryo

量化鸡胚发育过程中心管形成过程中的内胚层菌株

阅读:10
作者:Joshua M Hack, Nareen Z Anwar, John G Jackson, Meagan E Furth, Victor D Varner

Abstract

In the early avian embryo, the developing heart forms when bilateral fields of cardiac progenitor cells, which reside in the lateral plate mesoderm, move toward the embryonic midline, and fuse above the anterior intestinal portal (AIP) to form a straight, muscle-wrapped tube. During this process, the precardiac mesoderm remains in close contact with the underlying endoderm. Previous work has shown that the endoderm around the AIP actively contracts to pull the cardiac progenitors toward the midline. The morphogenetic deformations associated with this endodermal convergence, however, remain unclear, as do the signaling pathways that might regulate this process. Here, we fluorescently labeled populations of endodermal cells in early chicken embryos and tracked their motion during heart tube formation to compute time-varying strains along the anterior endoderm. We then determined how the computed endodermal strain distributions are affected by the pharmacological inhibition of either myosin II or fibroblast growth factor (FGF) signaling. Our data indicate that a mediolateral gradient in endodermal shortening is present around the AIP, as well as substantial convergence and extension movements both anterior and lateral to the AIP. These active endodermal deformations are disrupted if either actomyosin contractility or FGF signaling are inhibited pharmacologically. Taken together, these results demonstrate how active deformations along the anterior endoderm contribute to heart tube formation within the developing embryo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。