Application of Improved LSTM Algorithm in Macroeconomic Forecasting

改进的LSTM算法在宏观经济预测中的应用

阅读:7
作者:Shijun Chen, Xiaoli Han, Yunbin Shen, Chong Ye

Abstract

From a macro perspective, futures index of agricultural products can reflect the trend of macroeconomy and can also have an early warning effect on the possible crisis and provide a reference for the government's economic forecast and macro control. Therefore, it is necessary to strengthen the research on early warning and prediction of agricultural futures price. For the prediction of futures price, there are two kinds of common models: one is the traditional classic time series model, and the other is the neural network model under the wave of artificial intelligence. This paper selects the 1976 closing data of agricultural futures index from January 10, 2012, to February 27, 2020, and uses the time series differential autoregressive integrated moving average model (ARIMA model) and long short-term memory model (LSTM model) to study this work, respectively, and compares the predicted effects of the two models in some metrics. Based on the predicted results of the two models, a simple trading strategy is established, and the trading effects of the two models are compared. The results show that the LSTM model has obvious advantage over ARIMA time series model in the price index prediction of agricultural futures market.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。