Crystal structure of FAS thioesterase domain with polyunsaturated fatty acyl adduct and inhibition by dihomo-gamma-linolenic acid

FAS 硫酯酶结构域与多不饱和脂肪酰基加合物的晶体结构及二高-γ-亚麻酸的抑制作用

阅读:4
作者:Wei Zhang, Bornali Chakravarty, Fei Zheng, Ziwei Gu, Hongmei Wu, Jianqiang Mao, Salih J Wakil, Florante A Quiocho

Abstract

Human fatty acid synthase (hFAS) is a homodimeric multidomain enzyme that catalyzes a series of reactions leading to the de novo biosynthesis of long-chain fatty acids, mainly palmitate. The carboxy-terminal thioesterase (TE) domain determines the length of the fatty acyl chain and its ultimate release by hydrolysis. Because of the upregulation of hFAS in a variety of cancers, it is a target for antiproliferative agent development. Dietary long-chain polyunsaturated fatty acids (PUFAs) have been known to confer beneficial effects on many diseases and health conditions, including cancers, inflammations, diabetes, and heart diseases, but the precise molecular mechanisms involved have not been elucidated. We report the 1.48 Å crystal structure of the hFAS TE domain covalently modified and inactivated by methyl γ-linolenylfluorophosphonate. Whereas the structure confirmed the phosphorylation by the phosphonate head group of the active site serine, it also unexpectedly revealed the binding of the 18-carbon polyunsaturated γ-linolenyl tail in a long groove-tunnel site, which itself is formed mainly by the emergence of an α helix (the "helix flap"). We then found inhibition of the TE domain activity by the PUFA dihomo-γ-linolenic acid; γ- and α-linolenic acids, two popular dietary PUFAs, were less effective. Dihomo-γ-linolenic acid also inhibited fatty acid biosynthesis in 3T3-L1 preadipocytes and selective human breast cancer cell lines, including SKBR3 and MDAMB231. In addition to revealing a novel mechanism for the molecular recognition of a polyunsaturated fatty acyl chain, our results offer a new framework for developing potent FAS inhibitors as therapeutics against cancers and other diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。