Propofol attenuates mast cell degranulation via inhibiting the miR-221/PI3K/Akt/Ca2+ pathway

丙泊酚通过抑制 miR-221/PI3K/Akt/Ca2+ 通路减轻肥大细胞脱颗粒

阅读:6
作者:Zhiyong Yi, Zhipan Yi, Kai Huang, Yanqun Cao, Chuli Xiao, Yanwei Li, Quzhe Lu, Shuang Zhao, Wenqi Luo, Guanlan Liu

Abstract

The aim of the present study was to investigate the effect of propofol on immunoglobulin (Ig)E-activated mast cell degranulation and explore the underlying mechanisms responsible. RBL-2H3 cells were treated with propofol for at a variety of concentrations and different amounts of time. Cell viability was assessed using an MTT assay and microRNA (miR)-221 expression was quantified using reverse transcription-quantitative polymerase chain reaction. RBL-2H3 cells were transfected with miR-221 mimic or a negative control and degranulation, including the release of β-hexosaminidase and histamine, was evaluated using an ELISA kit. The effect of miR-221 overexpression on the phosphorylation of protein kinase B (Akt) was detected using western blotting and extracellular Ca2+ influx was measured via afura-2 assay. The phosphoinositide 3-kinase(PI3K) inhibitor LY294002 was used to investigate the association between PI3K/Akt signaling and Ca2+ influx in the presence of propofol. The results demonstrated that propofol treatment suppressed RBL-2H3 cell proliferation in a dose- and time-dependent manner. Propofol inhibited miR-221 expression in a dose-dependent manner compared with the control group; however, the inhibitive effect was significantly abrogated following transfection with miR-221 mimics. Furthermore, β-hexosaminidase and histamine release, PI3K/Akt signaling and Ca2+ influx were decreased following propofol application. miR-221 overexpression markedly ameliorated the suppressive effect of propofol. Treatment with LY294002 reversed the propofol-induced decrement of Ca2+ influx on IgE-mediated RBL-2H3 cells, suggesting an association between PI3K/Akt signaling and Ca2+ influx. In conclusion, the results of the present study suggest that propofol treatment attenuates mast cell degranulation via inhibiting the miR-221/PI3K/Akt/Ca2+ pathway. These results indicate that propofol may have a potential therapeutic effect as a treatment for allergic diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。