Antidepressants promote the spread of extracellular antibiotic resistance genes via transformation

抗抑郁药通过转化促进细胞外抗生素耐药基因的传播

阅读:8
作者:Ji Lu #, Pengbo Ding #, Yue Wang, Jianhua Guo

Abstract

The development of antibiotic resistance as an unavoidable consequence of the application of antimicrobials is a significant concern for human health. Antidepressants are being increasingly consumed globally. Human gut microbial communities are frequently exposed to antidepressants, yet little is known about the interaction between antidepressants and antibiotic resistance. This study aimed to investigate whether antidepressants can accelerate the dissemination of antibiotic resistance by increasing the rate of the horizontal transfer of antibiotic resistance genes (ARGs). Results demonstrated that some of the commonly-prescribed antidepressants (Duloxetine, Sertraline, Fluoxetine and Bupropion) at clinically relevant concentrations can significantly (n = 9; padj < 0.01) promote the transformation of extracellular ARGs into Acinetobacter baylyi ADP1 for a maximum of 2.3-fold, which is primarily associated with the overproduction of reactive oxygen species. The increased cell membrane permeability and porosity, stimulated transcription and translation of competence, SOS response, universal stress response and ATP synthesis-related genes are also associated with antidepressants-enhanced transformation. This study demonstrated that some antidepressants can speed up the spread of antibiotic resistance by promoting the transformation of ARGs, which emphasizes the necessity to assess the potential risks of antidepressants in spreading antibiotic resistance during clinical antidepressant applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。