In vivo ossification of a scaffold combining β-tricalcium phosphate and platelet-rich plasma

β-磷酸三钙和富血小板血浆支架的体内骨化

阅读:5
作者:DA Zhong, Cheng-Gong Wang, Ke Yin, Qiande Liao, Xing Zhou, An-Song Liu, Ling-Yu Kong

Abstract

Tricalcium phosphate (TCP) and platelet-rich plasma (PRP) are commonly used in bone tissue engineering. The aim of the present study was to investigate a composite that combined TCP with PRP and assess its effectiveness in the treatment of bone defects. Cavity-shaped bone defects were established on the tibiae of 27 beagle dogs, and were repaired by pure β-TCP with bone marrow stromal cells (BMSCs), β-TCP/PRP with BMSCs and autogenic ilium. The samples were harvested at 4, 8 and 12 weeks, and bone regeneration was evaluated using X-ray radiography, immunocytochemical staining of osteocalcin (OCN), hematoxylin and eosin staining and reverse transcription-polymerase chain reaction analyses. Biomechanical tests of the scaffolds were performed at the 12th week after scaffold implantation. When using pure β-TCP as a scaffold, the scaffold-bone interface was clear and no material adsorption and bone healing was observed. Substantial bone regeneration was observed when the tibial defects were restored using β-TCP/PRP and autogenic ilium. Furthermore, the mRNA expression levels of OCN, alkaline phosphatase and collagen type I α1 were significantly higher in the animals with β-TCP/PRP scaffolds at 8 and 12 weeks following implantation compared with those in the animals with the pure β-TCP scaffolds. The maximum load and compressive strength of the β-TCP/PRP scaffolds were similar to those of the autogenic ilium; however, they were significantly higher than those of the pure β-TCP scaffold. Thus, the β-TCP/PRP composite may be used as a potential scaffold to carry in vitro cultured BMSCs to treat bone defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。