Potential for genomic instability associated with retrotranspositionally-incompetent L1 loci

与逆转录转座能力不强的 L1 基因座相关的基因组不稳定性的可能性

阅读:4
作者:Kristine J Kines, Mark Sokolowski, Dawn L deHaro, Claiborne M Christian, Victoria P Belancio

Abstract

Expression of the L1 retrotransposon can damage the genome through insertional mutagenesis and the generation of DNA double-strand breaks (DSBs). The majority of L1 loci in the human genome are 5'-truncated and therefore incapable of retrotransposition. While thousands of full-length L1 loci remain, most are retrotranspositionally-incompetent due to inactivating mutations. However, mutations leading to premature stop codons within the L1 ORF2 sequence may yield truncated proteins that retain a functional endonuclease domain. We demonstrate that some truncated ORF2 proteins cause varying levels of toxicity and DNA damage when chronically overexpressed in mammalian cells. Furthermore, transfection of some ORF2 constructs containing premature stop codons supported low levels of Alu retrotransposition, demonstrating the potential for select retrotranspositionally-incompetent L1 loci to generate genomic instability. This result suggests yet another plausible explanation for the relative success of Alu elements in populating the human genome. Our data suggest that a subset of retrotranspositionally-incompetent L1s, previously considered to be harmless to genomic integrity, may have the potential to cause chronic DNA damage by introducing DSBs and mobilizing Alu. These results imply that the number of known L1 loci in the human genome that potentially threaten its stability may not be limited to the retrotranspositionally active loci.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。