Mapping the transcriptional landscape of human white and brown adipogenesis using single-nuclei RNA-seq

使用单核 RNA 测序绘制人类白色和棕色脂肪生成的转录图谱

阅读:4
作者:Anushka Gupta, Vissarion Efthymiou, Sean D Kodani, Farnaz Shamsi, Mary Elizabeth Patti, Yu-Hua Tseng, Aaron Streets

Abstract

Adipogenesis is key to maintaining organism-wide energy balance and healthy metabolic phenotype, making it critical to thoroughly comprehend its molecular regulation in humans. By single-nuclei RNA-sequencing (snRNA-seq) of over 20,000 differentiating white and brown preadipocytes, we constructed a high-resolution temporal transcriptional landscape of human white and brown adipogenesis. White and brown preadipocytes were isolated from a single individual's neck region, thereby eliminating inter-subject variability across two distinct lineages. These preadipocytes were also immortalized to allow for controlled, in vitro differentiation, allowing sampling of distinct cellular states across the spectrum of adipogenic progression. Pseudotemporal cellular ordering revealed the dynamics of ECM remodeling during early adipogenesis, and lipogenic/thermogenic response during late white/brown adipogenesis. Comparison with adipogenic regulation in murine models Identified several novel transcription factors as potential targets for adipogenic/thermogenic drivers in humans. Among these novel candidates, we explored the role of TRPS1 in adipocyte differentiation and showed that its knockdown impairs white adipogenesis in vitro. Key adipogenic and lipogenic markers revealed in our analysis were applied to analyze publicly available scRNA-seq datasets; these confirmed unique cell maturation features in recently discovered murine preadipocytes, and revealed inhibition of adipogenic expansion in humans with obesity. Overall, our study presents a comprehensive molecular description of both white and brown adipogenesis in humans and provides an important resource for future studies of adipose tissue development and function in both health and metabolic disease state.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。