Alpha-tocopherol transfer protein disruption confers resistance to malarial infection in mice

α-生育酚转移蛋白破坏使小鼠对疟疾感染产生抵抗力

阅读:8
作者:Maria S Herbas, Yoshiko Y Ueta, Chie Ichikawa, Mayumi Chiba, Kana Ishibashi, Mototada Shichiri, Shinya Fukumoto, Naoaki Yokoyama, Motohiro Takeya, Xuenan Xuan, Hiroyuki Arai, Hiroshi Suzuki

Background

Various factors impact the severity of malaria, including the nutritional status of the host. Vitamin E, an intra and extracellular anti-oxidant, is one such nutrient whose absence was shown previously to negatively affect Plasmodium development. However, mechanisms of this Plasmodium inhibition, in addition to means by which to exploit this finding as a therapeutic strategy, remain unclear.

Conclusion

Considering that these knockout mice lack observable negative impacts typical of vitamin E deficiency, these results suggest that inhibition of alpha-TTP activity in the liver may be a useful strategy in the prevention and treatment of malaria infection. Moreover, a combined strategy of alpha-TTP inhibition and chloroquine treatment might be effective against drug resistant parasites.

Methods

alpha-TTP knockout mice were infected with Plasmodium berghei NK65 or Plasmodium yoelii XL-17, parasitaemia, survival rate were monitored. In one part of the experiments mice were fed with a supplemented diet of vitamin E and then infected. In addition, parasite DNA damage was monitored by means of comet assay and 8-OHdG test. Moreover, infected mice were treated with chloroquine and parasitaemia and survival rate were monitored.

Results

Inhibition of alpha-tocopherol transfer protein (alpha-TTP), a determinant of vitamin E concentration in circulation, confers resistance to malarial infection as a result of oxidative damage to the parasites. Furthermore, in combination with the anti-malarial drug chloroquine results were even more dramatic.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。