Ecotoxicology of Polymetallic Nodule Seabed Mining: The Effects of Cobalt and Nickel on Phytoplankton Growth and Pigment Concentration

多金属结核海底采矿的生态毒理学:钴和镍对浮游植物生长和色素浓度的影响

阅读:5
作者:Rimei Ou, Hao Huang, Xuebao He, Shuangshuang Lin, Danyun Ou, Weiwen Li, Jinli Qiu, Lei Wang

Abstract

In order to improve the understanding of the environmental impacts of polymetallic nodule mining, ecotoxicological studies were conducted on the growth of model phytoplankton species Skeletonema costatum and Prorocentrum donghaiense using cobalt and nickel. This study evaluated various physiological and ecological indicators, such as cell proliferation, chlorophyll a, pigments, total protein, and antioxidant enzyme markers. The results show that the introduction of low amounts of cobalt or nickel increased the growth rate of phytoplankton. The phytoplankton benefited from low concentrations of cobalt and nickel stress. The increased protein levels and decreased activity of antioxidant enzymes considerably impacted physiological responses during the promotion of cell abundance. High concentrations of cobalt or nickel resulted in decreased light-absorbing pigments, increased photoprotective pigments, an inactive chlorophyll content, decreased total proteins, and maximal antioxidant enzyme activity in phytoplankton. Throughout the experiment, both the phytoplankton protein and enzyme activity declined with prolonged stress, and the cells underwent age-induced damage. Thus, seabed mining's repercussions on phytoplankton could result in both short-term growth promotion and long-term damage. These consequences depend on the impurity concentrations infiltrating the water, their duration, and the organism's physiological responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。