Potent Vasoconstrictor Kisspeptin-10 Induces Atherosclerotic Plaque Progression and Instability: Reversal by its Receptor GPR54 Antagonist

强效血管收缩剂 Kisspeptin-10 诱导动脉粥样硬化斑块进展和不稳定性:通过其受体 GPR54 拮抗剂逆转

阅读:4
作者:Kengo Sato, Remina Shirai, Mina Hontani, Rina Shinooka, Akinori Hasegawa, Tomoki Kichise, Tomoyuki Yamashita, Hayami Yoshizawa, Rena Watanabe, Taka-Aki Matsuyama, Hatsue Ishibashi-Ueda, Shinji Koba, Youichi Kobayashi, Tsutomu Hirano, Takuya Watanabe

Background

Kisspeptin-10 (KP-10), a potent vasoconstrictor and inhibitor of angiogenesis, and its receptor, GPR54, have currently received much attention in relation to pre-eclampsia. However, it still remains unknown whether KP-10 could affect atherogenesis.

Conclusions

Our results suggest that KP-10 may contribute to accelerate the progression and instability of atheromatous plaques, leading to plaque rupture. The GPR54 antagonist may be useful for prevention and treatment of atherosclerosis. Thus, the KP-10/GPR54 system may serve as a novel therapeutic target for atherosclerotic diseases.

Results

We evaluated the effects of KP-10 on human umbilical vein endothelial cells, human monocyte-derived macrophages, human aortic smooth muscle cells in vitro, and atherosclerotic lesions in apolipoprotein E-deficient (ApoE-/-) mice in vivo. KP-10 significantly increased the adhesion of human monocytes to human umbilical vein endothelial cells, which was significantly inhibited by pretreatment with P234, a GPR54 antagonist. KP-10 stimulated mRNA expression of tumor necrosis factor-α, interleukin-6, monocyte chemotactic protein-1, intercellular adhesion molecule-1, vascular adhesion molecule-1, and E-selectin in human umbilical vein endothelial cells. KP-10 significantly enhanced oxidized low-density lipoprotein-induced foam cell formation associated with upregulation of CD36 and acyl-CoA:cholesterol acyltransferase-1 in human monocyte-derived macrophages. In human aortic smooth muscle cells, KP-10 significantly suppressed angiotensin II-induced migration and proliferation, but enhanced apoptosis and activities of matrix metalloproteinase (MMP)-2 and MMP-9 by upregulation of extracellular signal-regulated kinase 1 and 2, p38, Bcl-2-associated X protein, and caspase-3. Four-week-infusion of KP-10 into ApoE-/- mice significantly accelerated the development of aortic atherosclerotic lesions with increased monocyte/macrophage infiltration and vascular inflammation as well as decreased intraplaque vascular smooth muscle cells contents. Proatherosclerotic effects of endogenous and exogenous KP-10 were completely canceled by P234 infusion in ApoE-/- mice. Conclusions: Our results suggest that KP-10 may contribute to accelerate the progression and instability of atheromatous plaques, leading to plaque rupture. The GPR54 antagonist may be useful for prevention and treatment of atherosclerosis. Thus, the KP-10/GPR54 system may serve as a novel therapeutic target for atherosclerotic diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。