Intra-cerebral implantation of a variety of collagenous scaffolds with nervous embryonic cells

多种胶原支架与神经胚胎细胞的脑内植入

阅读:5
作者:Jacek Drobnik, Krystyna Pietrucha, Karolina Janczar, Lech Polis, Bartosz Polis, Marta Safandowska, Jacek Szymański

Abstract

Collagenous scaffolds provide good conditions for embryonic nerve cell growth. The aim of the current study was to assess the brains reaction to the implantation of 3D sponge-shaped scaffolds. These scaffolds consisted of collagen (Col) and Col with chondroitin sulphate, which is modified by carbodiimide, or Col crosslinked with dialdehyde cellulose. The current study also evaluated the expression of integrins α2 and β1 in embryonic nerve cells. Embryonic nerve cells were isolated from the brains of rat embryos. Acellular scaffolds, or scaffolds populated with embryonic nerve cells, were implanted into the rats brain. The fibers of all the implanted scaffolds remained intact and served as a template for cell infiltration. The implants induced minimal to moderate inflammatory responses and minimal glial scar formations. Immunohistochemical studies did not indicate any microtubule-associated protein 2 or glial fibrillary acidic protein-positive cells inside the scaffolds. Acellular and cell-populated scaffolds yielded similar responses in the brain. The expression of integrin α2 and β1 was observed in embryonic nervous cells. TC-I15, the integrin α2β1 inhibitor, was not demonstrated to modify cell entrapment within the collagenous scaffolds. All applied scaffolds were well tolerated by the tissue and were indicated to support blood vessel formation. Therefore, all tested biomaterials are recommended for further studies. Additional chemical modifications of the material are suggested to protect the seeded cells from apoptosis after implantation into the brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。