Protective effect of astragalosides from Radix Astragali on adriamycin-induced podocyte injury

黄芪总苷对阿霉素致足细胞损伤的保护作用

阅读:7
作者:Yi-Pa Sai, Yuan-Chun Song, Xing-Xing Chen, Xuan Luo, Jing Liu, Wei-Jing Cui

Abstract

Nephrotic syndrome (NS) is the most common kidney disease in clinical practice and may lead to end-stage renal failure. Astragalosides (AST) have been clinically tested for the treatment of NS, but their mechanism of action has remained to be elucidated. The aim of the present study was to investigate the effect of AST on the structure and function of podocytes with adriamycin (ADR)-induced damage and to elucidate the underlying molecular mechanisms. The mouse podocyte clone 5 (MPC5) immortalized mouse podocyte cell line was treated with 0.5 µmol/l ADR to establish a podocyte injury model. The MPC5 podocytes were divided into a control group, a podocyte injury group and a low-, medium- and high-concentration AST treatment group. The results indicated that the survival rate of the podocyte injury group was significantly decreased compared with that in the control group and each AST-treated group had an increased survival rate compared with that in the podocyte injury group. Furthermore, each dose of AST significantly inhibited the ADR-associated increases the levels of lactate dehydrogenase and malondialdehyde and the decrease in the activity of superoxide dismutase in MPC5 podocytes. In addition, AST improved the migration ability of MPC5 podocytes and suppressed the cytoskeletal rearrangement associated with ADR-induced damage. Furthermore, matrix metalloproteinase (MMP)-2 and -9 were decreased in the podocyte injury group, which was inhibited by different concentrations of AST. Thus, AST was able to maintain the balance of oxidative stress in podocytes cultured with ADR and protect them from ADR-induced injury. The mechanism may be associated with the upregulation of MMPs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。