Anti-Cancer Effects of Auranofin in Human Lung Cancer Cells by Increasing Intracellular ROS Levels and Depleting GSH Levels

金诺芬通过增加细胞内 ROS 水平和消耗 GSH 水平对人类肺癌细胞发挥抗癌作用

阅读:4
作者:Xia Ying Cui, Sun Hyang Park, Woo Hyun Park

Abstract

Auranofin, as a thioredoxin reductase (TrxR) inhibitor, has promising anti-cancer activity in several cancer types. However, little is known about the inhibitory effect of auranofin on lung cancer cell growth. We, therefore, investigated the antigrowth effects of auranofin in various lung cancer cells with respect to cell death, reactive oxygen species (ROS), and glutathione (GSH) levels. Treatment with 0~5 µM auranofin decreased cell proliferation and induced cell death in Calu-6, A549, SK-LU-1, NCI-H460, and NCI-H1299 lung cancer cells at 24 h. In addition, 0~5 µM auranofin increased ROS levels, including O2•-, and depleted GSH levels in these cells. N-acetyl cysteine (NAC) prevented growth inhibition and mitochondrial membrane potential (MMP, ∆Ψm) loss in 3 and 5 µM auranofin-treated Calu-6 and A549 cells at 24 h, respectively, and decreased ROS levels and GSH depletion in these cells. In contrast, L-buthionine sulfoximine (BSO) enhanced cell death, MMP (∆Ψm) loss, ROS levels, and GSH depletion in auranofin-treated Calu-6 and A549 cells. Treatment with 3 and 5 µM auranofin induced caspase-3 activation and poly (ADP ribose) polymerase (PARP) cleavage in Calu-6 and A549 cells, respectively. Both were prevented by NAC, but enhanced by BSO. Moreover, TrxR activity was reduced in auranofin-treated Calu-6 and A549 cells. That activity was decreased by BSO, but increased by NAC. In conclusion, these findings demonstrate that auranofin-induced cell death is closely related to oxidative stress resulted from increased ROS levels and GSH depletion in lung cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。