Chromosome-level genome assembly of the Pacific geoduck Panopea generosa reveals major inter- and intrachromosomal rearrangements and substantial expansion of the copine gene family

太平洋象拔蚌 Panopea generosa 的染色体水平基因组组装揭示了染色体间和染色体内的主要重排以及 copine 基因家族的大量扩增

阅读:4
作者:Jing Wang, Qing Xu, Min Chen, Yang Chen, Chunde Wang, Nansheng Chen

Abstract

The Pacific geoduck Panopea generosa (class Bivalvia, order Adapedonta, family Hiatellidae, genus Panopea) is the largest known burrowing bivalve with considerable commercial value. Pacific geoduck and other geoduck clams play important roles in maintaining ecosystem health for their filter feeding habit and coupling pelagic and benthic processes. Here, we report a high-quality chromosome-level genome assembly of P. generosa to characterize its phylogeny and molecular mechanisms of its life strategies. The assembled P. generosa genome consists of 19 chromosomes with a size of 1.47 Gb, a contig N50 length of 1.6 Mb, and a scaffold N50 length of 73.8 Mb. The BUSCO test of the genome assembly showed 93.0% completeness. Constructed chromosome synteny revealed many occurrences of inter- and intrachromosomal rearrangements between P. generosa and Sinonovacula constricta. Of the 35,034 predicted protein-coding genes, 30,700 (87.6%) could be functionally annotated in public databases, indicating the high quality of genome annotation. Comparison of gene copy numbers of gene families among P. generosa and 11 selected species identified 507 rapidly expanded P. generosa gene families that are functionally enriched in immune and gonad development and may be involved in its complex survival strategies. In particular, genes carrying the copine domains underwent additional duplications in P. generosa, which might be important for neuronal development and immune response. The availability of a fully annotated chromosome-level genome provides a valuable dataset for genetic breeding of P. generosa.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。