Conclusions
These findings demonstrate that Sima/HIF1α is required during embryogenesis to coordinately up-regulate carbohydrate metabolism in preparation for larval growth. Notably, our study also reveals that the Sima/HIF1α-dependent gene expression program shares considerable overlap with that observed in dERR mutant, suggesting that Sima/HIF1α and dERR cooperatively regulate embryonic and larval glycolytic gene expression.
Methods
CRISPR/Cas9 was used to generate new loss-of-function alleles in the Drosophila gene similar (sima), which encodes the sole fly ortholog of Hif1α. The resulting mutant strains were analyzed using a combination of metabolomics and RNAseq for defects in carbohydrate metabolism.
Results
Our studies reveal that sima mutants fail to activate aerobic glycolysis and die during larval development with metabolic phenotypes that mimic those displayed by dERR mutants. Moreover, we demonstrate that dERR and Sima/Hif1α protein accumulation is mutually dependent, as loss of either transcription factor results in decreased abundance of the other protein. Conclusions: These findings demonstrate that Sima/HIF1α is required during embryogenesis to coordinately up-regulate carbohydrate metabolism in preparation for larval growth. Notably, our study also reveals that the Sima/HIF1α-dependent gene expression program shares considerable overlap with that observed in dERR mutant, suggesting that Sima/HIF1α and dERR cooperatively regulate embryonic and larval glycolytic gene expression.
