SARS-CoV-2 Nsp14 binds Tollip and activates pro-inflammatory pathways while downregulating interferon-α and interferon-γ receptors

SARS-CoV-2 Nsp14 与 Tollip 结合并激活促炎通路,同时下调干扰素 α 和干扰素 γ 受体

阅读:5
作者:Naveen Thakur, Poushali Chakraborty, JoAnn M Tufariello, Christopher F Basler

Abstract

SARS coronavirus 2 (SARS-CoV-2) non-structural protein 14 (Nsp14) possesses an N-terminal exonuclease (ExoN) domain that provides a proofreading function for the viral RNA-dependent RNA polymerase and a C-terminal N7-methyltransferase (N7-MTase) domain that methylates viral mRNA caps. Nsp14 also modulates host functions. This includes the activation of NF-κB and downregulation of interferon alpha/beta receptor 1 (IFNAR1). Here we demonstrate that Nsp14 exerts broader effects, activating not only NF-κB responses but also ERK, p38 and JNK MAP kinase (MAPK) signaling, promoting cytokine production. Further, Nsp14 downregulates not only IFNAR1 but also IFN-γ receptor 1 (IFNGR1), impairing cellular responses to both IFNα and IFNγ. IFNAR1 and IFNGR1 downregulation is via a lysosomal pathway and also occurs in SARS-CoV-2 infected cells. Analysis of a panel of Nsp14 mutants reveals a consistent pattern. Mutants that disable ExoN function remain active, whereas N7-MTase mutations impair both pro-inflammatory pathway activation and IFN receptor downregulation. Innate immune modulating functions also require the presence of both the ExoN and N7-MTase domains likely reflecting the need for the ExoN domain for N7-MTase activity. We further identify multi-functional host protein Tollip as an Nsp14 interactor. Interaction requires the phosphoinositide-binding C2 domain of Tollip and sequences C-terminal to the C2 domain. Full length Tollip or regions encompassing the Nsp14 interaction domain are sufficient to counteract both Nsp14-mediated and Nsp14-independent activation of NF-κB. Knockdown of Tollip partially reverses IFNAR1 and IFNGR1 downregulation in SARS-CoV-2 infected cells, suggesting relevance of Nsp14-Tollip interaction for Nsp14 innate immune evasion functions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。