Rolling of soft microbots with tunable traction

具有可调牵引力的软微型机器人的滚动

阅读:9
作者:Yan Gao, Brennan Sprinkle, Ela Springer, David W M Marr, Ning Wu

Abstract

Microbot (μbot)-based targeted drug delivery has attracted increasing attention due to its potential for avoiding side effects associated with systemic delivery. To date, most μbots are rigid. When rolling on surfaces, they exhibit substantial slip due to the liquid lubrication layer. Here, we introduce magnetically controlled soft rollers based on Pickering emulsions that, because of their intrinsic deformability, fundamentally change the nature of the lubrication layer and roll like deflated tires. With a large contact area between μbot and wall, soft μbots exhibit tractions higher than their rigid counterparts, results that we support with both theory and simulation. Upon changing the external field, surface particles can be reconfigured, strongly influencing both the translation speed and traction. These μbots can also be destabilized upon pH changes and used to deliver their contents to a desired location, overcoming the limitations of low translation efficiency and drug loading capacity associated with rigid structures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。