PINK1 enhances insulin-like growth factor-1-dependent Akt signaling and protection against apoptosis

PINK1 增强胰岛素样生长因子 1 依赖的 Akt 信号传导并防止细胞凋亡

阅读:5
作者:Ravi S Akundi, Lianteng Zhi, Hansruedi Büeler

Abstract

Mutations in the PARK6 gene coding for PTEN-induced kinase 1 (PINK1) cause recessive early-onset Parkinsonism. Although PINK1 and Parkin promote the degradation of depolarized mitochondria in cultured cells, little is known about changes in signaling pathways that may additionally contribute to dopamine neuron loss in recessive Parkinsonism. Accumulating evidence implicates impaired Akt cell survival signaling in sporadic and familial PD (PD). IGF-1/Akt signaling inhibits dopamine neuron loss in several animal models of PD and both IGF-1 and insulin are neuroprotective in various settings. Here, we tested whether PINK1 is required for insulin-like growth factor 1 (IGF-1) and insulin dependent phosphorylation of Akt and the regulation of downstream Akt target proteins. Our results show that embryonic fibroblasts from PINK1-deficient mice display significantly reduced Akt phosphorylation in response to both IGF-1 and insulin. Moreover, phosphorylation of glycogen synthase kinase-3β (GSK-3β) and nuclear exclusion of FoxO1 are decreased in IGF-1 treated PINK1-deficient cells. In addition, phosphorylation of ribosomal protein S6 is reduced indicating decreased activity of mitochondrial target of rapamycin (mTOR) in IGF-1 treated PINK1(-/-) cells. Importantly, the protection afforded by IGF-1 against staurosporine-induced metabolic dysfunction and apoptosis is abrogated in PINK1-deficient cells. Moreover, IGF-1-induced Akt phosphorylation is impaired in primary cortical neurons from PINK1-deficient mice. Inhibition of cellular Ser/Thr phosphatases did not increase the amount of phosphorylated Akt in PINK1(-/-) cells, suggesting that components upstream of Akt phosphorylation are compromised in PINK1-deficient cells. Our studies show that PINK1 is required for optimal IGF-1 and insulin dependent Akt signal transduction, and raise the possibility that impaired IGF-1/Akt signaling is involved in PINK1-related Parkinsonism by increasing the vulnerability of dopaminergic neurons to stress-induced cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。