Heavy alloy based on tungsten and bismuth: fabrication, crystal structure, morphology, and shielding efficiency against gamma-radiation

基于钨和铋的重合金:制备、晶体结构、形态和对伽马辐射的屏蔽效率

阅读:4
作者:Daria I Tishkevich, Anastasia A Rotkovich, Stepan A German, Aliaksandr L Zhaludkevich, Tatiana N Vershinina, Anastasia A Bondaruk, Ihar U Razanau, Mengge Dong, M I Sayyed, Sergey V Leonchik, Tatiana Zubar, Maxim V Silibin, Sergei V Trukhanov, Alex V Trukhanov1

Abstract

W-Bi2O3 composites were fabricated using the hot isostatic pressing technique for the first time. The duration of the samples sintering was 3 minutes under conditions of high pressure and temperature. The study of microstructural features and chemical composition of sintered samples was carried out using scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The effect of temperature on the quality of the obtained W-Bi2O3 composites is determined. The densest samples were obtained at a pressure of 5 GPa and temperatures of 25 °C and 500 °C, the densities of which were 18.10 and 17.85 g cm-3, respectively. It is presented that high temperature exposure during sintering adversely affects both the composite density and microstructure due to the redox reaction accompanied by the reduction of Bi and the oxidation of W. The results of the W-Bi2O3 structure study using X-ray diffraction analysis showed that all samples included the main bulk-centered cubic W phase. The presence of the WO2 phase is noted only when the sintering temperature is increased up to 850 °C, which is confirmed by the appearance of diffraction peaks that correspond to 111 and 22-2 crystallographic planes. The shielding efficiency of the W-Bi2O3 composite against gamma radiation using the Phy-X/PSD software was evaluated. A Co60 isotope with an energy of 0.826-2.506 MeV was used as a source of gamma radiation. The calculation results were compared with those for Pb and Bi. Key shielding parameters such as the linear attenuation coefficient, half-value layer, tenth-value layer, mean free path, and effective atomic number are determined. The calculation results revealed that the W-Bi2O3 composite surpasses Pb and Bi in its shielding properties, which makes it promising for use as a prospective material for radiation shielding applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。