Effect of Electrical Stimulation Conditions on Neural Stem Cells Differentiation on Cross-Linked PEDOT:PSS Films

电刺激条件对交联 PEDOT:PSS 薄膜上神经干细胞分化的影响

阅读:5
作者:Laura Sordini, Fábio F F Garrudo, Carlos A V Rodrigues, Robert J Linhardt, Joaquim M S Cabral, Frederico Castelo Ferreira, Jorge Morgado

Abstract

The ability to culture and differentiate neural stem cells (NSCs) to generate functional neural populations is attracting increasing attention due to its potential to enable cell-therapies to treat neurodegenerative diseases. Recent studies have shown that electrical stimulation improves neuronal differentiation of stem cells populations, highlighting the importance of the development of electroconductive biocompatible materials for NSC culture and differentiation for tissue engineering and regenerative medicine. Here, we report the use of the conjugated polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS CLEVIOS P AI 4083) for the manufacture of conductive substrates. Two different protocols, using different cross-linkers (3-glycidyloxypropyl)trimethoxysilane (GOPS) and divinyl sulfone (DVS) were tested to enhance their stability in aqueous environments. Both cross-linking treatments influence PEDOT:PSS properties, namely conductivity and contact angle. However, only GOPS-cross-linked films demonstrated to maintain conductivity and thickness during their incubation in water for 15 days. GOPS-cross-linked films were used to culture ReNcell-VM under different electrical stimulation conditions (AC, DC, and pulsed DC electrical fields). The polymeric substrate exhibits adequate physicochemical properties to promote cell adhesion and growth, as assessed by Alamar Blue® assay, both with and without the application of electric fields. NSCs differentiation was studied by immunofluorescence and quantitative real-time polymerase chain reaction. This study demonstrates that the pulsed DC stimulation (1 V/cm for 12 days), is the most efficient at enhancing the differentiation of NSCs into neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。