Poly(benzodifurandione) Coated Silk Yarn for Thermoelectric Textiles

用于热电纺织品的聚苯并二呋喃二酮涂层丝线

阅读:8
作者:Mariavittoria Craighero, Qifan Li, Zijin Zeng, Chunghyeon Choi, Youngseok Kim, Hyungsub Yoon, Tiefeng Liu, Przemyslaw Sowinski, Shuichi Haraguchi, Byungil Hwang, Besira Mihiretie, Simone Fabiano, Christian Müller

Abstract

Thermoelectric textile devices represent an intriguing avenue for powering wearable electronics. The lack of air-stable n-type polymers has, until now, prevented the development of n-type multifilament yarns, which are needed for textile manufacturing. Here, the thermomechanical properties of the recently reported n-type polymer poly(benzodifurandione) (PBFDO) are explored and its suitability as a yarn coating material is assessed. The outstanding robustness of the polymer facilitates the coating of silk yarn that, as a result, displays an effective bulk conductivity of 13 S cm-1, with a projected half-life of 3.2 ± 0.7 years at ambient conditions. Moreover, the n-type PBFDO coated silk yarn with a Young's modulus of E = 0.6 GPa and a strain at break of εbreak = 14% can be machine washed, with only a threefold decrease in conductivity after seven washing cycles. PBFDO and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) coated silk yarns are used to fabricate two out-of-plane thermoelectric textile devices: a thermoelectric button and a larger thermopile with 16 legs. Excellent air stability is paired with an open-circuit voltage of 17 mV and a maximum output power of 0.67 µW for a temperature difference of 70 K. Evidently, PBFDO coated multifilament silk yarn is a promising component for the realization of air stable thermoelectric textile devices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。