Crystal structure of 2C helicase from enterovirus 71

肠道病毒 71 的 2C 解旋酶的晶体结构

阅读:7
作者:Hongxin Guan, Juan Tian, Bo Qin, Justyna Aleksandra Wojdyla, Bei Wang, Zhendong Zhao, Meitian Wang, Sheng Cui

Abstract

Enterovirus 71 (EV71) is the major pathogen responsible for outbreaks of hand, foot, and mouth disease. EV71 nonstructural protein 2C participates in many critical events throughout the virus life cycle; however, its precise role is not fully understood. Lack of a high-resolution structure made it difficult to elucidate 2C activity and prevented inhibitor development. We report the 2.5 Å-resolution crystal structure of the soluble part of EV71 2C, containing an adenosine triphosphatase (ATPase) domain, a cysteine-rich zinc finger with an unusual fold, and a carboxyl-terminal helical domain. Unlike other AAA+ ATPases, EV71 2C undergoes a carboxyl terminus-mediated self-oligomerization, which is dependent on a specific interaction between the carboxyl-terminal helix of one monomer and a deep pocket formed between the ATPase and the zinc finger domains of the neighboring monomer. The carboxyl terminus-mediated self-oligomerization is fundamental to 2C ATPase activity and EV71 replication. Our findings suggest a strategy for inhibition of enterovirus replication by disruption of the self-oligomerization interface of 2C.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。