Synthesis and Characterisation of Nanocrystalline CoxFe1-xGDC Powders as a Functional Anode Material for the Solid Oxide Fuel Cell

纳米晶 CoxFe1-xGDC 粉末作为固体氧化物燃料电池功能阳极材料的合成与表征

阅读:3
作者:Laura Quinlan, Talia Brooks, Nasrin Ghaemi, Harvey Arellano-Garcia, Maryam Irandoost, Fariborz Sharifianjazi, Bahman Amini Horri

Abstract

The necessity for high operational temperatures presents a considerable obstacle to the commercial viability of solid oxide fuel cells (SOFCs). The introduction of active co-dopant ions to polycrystalline solid structures can directly impact the physiochemical and electrical properties of the resulting composites including crystallite size, lattice parameters, ionic and electronic conductivity, sinterability, and mechanical strength. This study proposes cobalt-iron-substituted gadolinium-doped ceria (CoxFe1-xGDC) as an innovative, nickel-free anode composite for developing ceramic fuel cells. A new co-precipitation technique using ammonium tartrate as the precipitant in a multi-cationic solution with Co2+, Gd3+, Fe3+, and Ce3+ ions was utilized. The physicochemical and morphological characteristics of the synthesized samples were systematically analysed using a comprehensive set of techniques, including DSC/TGA for a thermal analysis, XRD for a crystallographic analysis, SEM/EDX for a morphological and elemental analysis, FT-IR for a chemical bonding analysis, and Raman spectroscopy for a vibrational analysis. The morphological analysis, SEM, showed the formation of nanoparticles (≤15 nm), which corresponded well with the crystal size determined by the XRD analysis, which was within the range of ≤10 nm. The fabrication of single SOFC bilayers occurred within an electrolyte-supported structure, with the use of the GDC as the electrolyte layer and the CoO-Fe2O3/GDC composite as the anode. SEM imaging and the EIS analysis were utilized to examine the fabricated symmetrical cells.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。