MicroRNA-570-3p regulates HuR and cytokine expression in airway epithelial cells

MicroRNA-570-3p 调节气道上皮细胞中的 HuR 和细胞因子表达

阅读:7
作者:Alanna N Roff, Timothy J Craig, Avery August, Cristiana Stellato, Faoud T Ishmael

Abstract

Asthma is a chronic lung disease that affects people of all ages and is characterized by high morbidity. The mechanisms of asthma pathogenesis are unclear, and there is a need for development of diagnostic biomarkers and greater understanding of regulation of inflammatory responses in the lung. Post-transcriptional regulation of cytokines, chemokines, and growth factors by the action of microRNAs and RNA-binding proteins on stability or translation of mature transcripts is emerging as a central means of regulating the inflammatory response. In this study, we demonstrate that miR-570-3p expression is increased with TNFα stimuli in normal human bronchial epithelial cells (2.6 ± 0.6, p = 0.01) and the human airway epithelial cell line A549 (4.6 ± 1.4, p = 0.0068), and evaluate the functional effects of its overexpression on predicted mRNA target genes in transfected A549 cells. MiR-570-3p upregulated numerous cytokines and chemokines (CCL4, CCL5, TNFα, and IL-6) and also enhanced their induction by TNFα. For other cytokines (CCL2 and IL-8), the microRNA exhibited an inhibitory effect to repress their upregulation by TNFα. These effects were mediated by a complex pattern of both direct and indirect regulation of downstream targets by miR-570-3p. We also show that the RNA-binding protein HuR is a direct target of miR-570-3p, which has implications for expression of numerous other inflammatory mediators that HuR is known regulate post-transcriptionally. Finally, expression of endogenous miR-570-3p was examined in both serum and exhaled breath condensate (EBC) from asthmatic and healthy patients, and was found to be significantly lower in EBC of asthmatics and inversely correlated to their lung function. These studies implicate miR-570-3p as a potential regulator of asthmatic inflammation with potential as both a diagnostic and therapeutic target in asthma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。