Conclusions
Synthetic data generated by a physical model of contrast enhancement provided effective training for a deep learning model for contrast amplification. Contrast above that attainable at standard doses of gadolinium-based CA can be generated through this approach, with significant advantages in the detection of small low-enhancing brain lesions.
Methods
A physical model was applied to simulate different levels of MR contrast from a gadolinium-based CA. The simulated data were used to train a neural network that predicts image contrast at higher doses. A preclinical MR study at multiple CA doses in a rat model of glioma was performed to tune model parameters and to assess fidelity of the virtual contrast images against ground-truth MR and histological data. Two different scanners (3 T and 7 T, respectively) were used to assess the effects of field strength. The approach was then applied to a retrospective clinical study comprising 1990 examinations in patients affected by a variety of brain diseases, including glioma, multiple sclerosis, and metastatic cancer. Images were evaluated in terms of contrast-to-noise ratio and lesion-to-brain ratio, and qualitative scores.
Results
In the preclinical study, virtual double-dose images showed high degrees of similarity to experimental double-dose images for both peak signal-to-noise ratio and structural similarity index (29.49 dB and 0.914 dB at 7 T, respectively, and 31.32 dB and 0.942 dB at 3 T) and significant improvement over standard contrast dose (ie, 0.1 mmol Gd/kg) images at both field strengths. In the clinical study, contrast-to-noise ratio and lesion-to-brain ratio increased by an average 155% and 34% in virtual contrast images compared with standard-dose images. Blind scoring of AI-enhanced images by 2 neuroradiologists showed significantly better sensitivity to small brain lesions compared with standard-dose images (4.46/5 vs 3.51/5). Conclusions: Synthetic data generated by a physical model of contrast enhancement provided effective training for a deep learning model for contrast amplification. Contrast above that attainable at standard doses of gadolinium-based CA can be generated through this approach, with significant advantages in the detection of small low-enhancing brain lesions.
