Underlying mitochondrial dysfunction triggers flutamide-induced oxidative liver injury in a mouse model of idiosyncratic drug toxicity

在特异质药物毒性小鼠模型中,潜在的线粒体功能障碍引发氟他胺诱导的氧化性肝损伤

阅读:5
作者:Rohini Kashimshetty, Varsha G Desai, Vijay M Kale, Taewon Lee, Carrie L Moland, William S Branham, Lee S New, Eric C Y Chan, Husam Younis, Urs A Boelsterli

Abstract

Flutamide, a widely used nonsteroidal anti-androgen, but not its bioisostere bicalutamide, has been associated with idiosyncratic drug-induced liver injury. Although the susceptibility factors are unknown, mitochondrial injury has emerged as a putative hazard of flutamide. To explore the role of mitochondrial sensitization in flutamide hepatotoxicity, we determined the effects of superimposed drug stress in a murine model of underlying mitochondrial abnormalities. Male wild-type or heterozygous Sod2(+/-) mice were injected intraperitoneously with flutamide (0, 30 or 100 mg/kg/day) for 28 days. A kinetic pilot study revealed that flutamide (100 mg/kg/day) caused approximately 10-fold greater exposure than the reported therapeutic mean plasma levels. Mutant (5/10), but not wild-type, mice in the high-dose group exhibited small foci of hepatocellular necrosis and an increased number of apoptotic hepatocytes. Hepatic GSSG/GSH, protein carbonyl levels, and serum lactate levels were significantly increased, suggesting oxidant stress and mitochondrial dysfunction. Measurement of mitochondrial superoxide in cultured hepatocytes demonstrated that mitochondria were a significant source of flutamide-enhanced oxidant stress. Indeed, mitochondria isolated from flutamide-treated Sod2(+/-) mice exhibited decreased aconitase activity as compared to vehicle controls. A transcriptomics analysis using MitoChips revealed that flutamide-treated Sod2(+/-) mice exhibited a selective decrease in the expression of all complexes I and III subunits encoded by mitochondrial DNA. In contrast, Sod2(+/-) mice receiving bicalutamide (50 mg/kg/day) did not reveal any hepatic changes. These results are compatible with our concept that flutamide targets hepatic mitochondria and exerts oxidant stress that can lead to overt hepatic injury in the presence of an underlying mitochondrial abnormality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。