Avidity-controlled delivery of angiogenic peptides from injectable molecular-recognition hydrogels

可注射分子识别水凝胶中血管生成肽的亲和力控制递送

阅读:7
作者:Widya Mulyasasmita, Lei Cai, Yuki Hori, Sarah C Heilshorn

Abstract

Peptide mimics of growth factors represent an emerging class of therapeutic drugs due to high biological specificity and relative ease of synthesis. However, maintaining efficacious therapeutic dosage at the therapy site has proven challenging owing to poor intestinal permeability and short circulating half-lives in the blood stream. In this work, we present the affinity immobilization and controlled release of QK, a vascular endothelial growth factor (VEGF) mimetic peptide, from an injectable mixing-induced two-component hydrogel (MITCH). The MITCH system is crosslinked by reversible interactions between WW domains and complementary proline-rich peptide modules. Fusion of the QK peptide to either one or two units of the proline-rich sequence creates bifunctional peptide conjugates capable of specific binding to MITCH while preserving their angiogenic bioactivity. Presenting two repeats of the proline-rich sequence increases the binding enthalpy 2.5 times due to avidity effects. Mixing of the drug conjugates with MITCH components results in drug encapsulation and extended release at rates consistent with the affinity immobilization strength. Human umbilical vein endothelial cells (HUVECs) treated with the soluble drug conjugates exhibit morphogenetic events of VEGF receptor 2 signal transduction followed by cell migration and organization into networks characteristic of early angiogenesis. In a three-dimensional model where HUVECs were cultured as spheroids in a matrix of collagen and fibronectin, injection of drug-releasing MITCH resulted in significantly more cell outgrowth than drugs injected in saline. This ability to sustain local drug availability is ideal for therapeutic angiogenesis applications, where spatiotemporal control over drug distribution is a key requirement for clinical success.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。