Distinct regulation of inner medullary collecting duct nitric oxide production from mice and rats

小鼠和大鼠内髓集合管一氧化氮产生的不同调节

阅读:5
作者:Kelly A Hyndman, Jing Xue, Alexander MacDonell, Joshua S Speed, Chunhua Jin, Jennifer S Pollock

Abstract

Nitric oxide (NO) and NO synthase 1 (NOS1) maintain sodium and water homeostasis. The NOS1α and NOS1β splice variants are expressed in the rat inner medulla, but only NOS1β is expressed in the mouse. Collecting duct NOS1 is necessary for blood pressure control. We hypothesized that NOS1 splice variant expression and NO production in the inner medullary collecting duct (IMCD) are regulated differently in mice and rats by high dietary sodium. Male C57blk/J6 mice and Sprague-Dawley rats were fed a 0.4% (normal salt; NS), or 4% (high salt; HS) NaCl diet for 2 or 7 days. Mean arterial pressure was not altered by HS, whereas urinary sodium excretion in mice and rats was increased significantly. Urinary excretion of nitrate/nitrite (NO(x)) and IMCD nitrite production were significantly greater in mice compared with rats on the HS diet. Western blotting indicated that only NOS1β and NOS3 were expressed in the mouse IMCD and that expression was unaffected by the HS diet at either time point. In contrast, NOS1α was detected in the IMCD of rats, in addition to NOS1β and NOS3. Feeding of the HS diet for 2 days increased NOS1α and NOS1β expression in the rat IMCD and 7 day feeding of the HS diet further increased NOS1β expression. Expression of NOS3 was unchanged by the HS diet at either time point. In conclusion, IMCD NO production in mice and rats is distinctly regulated under both NS and HS conditions, including expression of NOS1 splice variants.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。