Electrode-free nanopore sensing by DiffusiOptoPhysiology

DiffusiOptoPhysiology 的无电极纳米孔传感

阅读:5
作者:Yuqin Wang, Yu Wang, Xiaoyu Du, Shuanghong Yan, Panke Zhang, Hong-Yuan Chen, Shuo Huang

Abstract

A wide variety of single molecules can be identified by nanopore sensing. However, all reported nanopore sensing applications result from the same measurement configuration adapted from electrophysiology. Although urgently needed in commercial nanopore sequencing, parallel electrophysiology recording is limited in its cost and its throughput due to the introduced complexities from electronic integration. We present the first electrode-free nanopore sensing method defined as DiffusiOptoPhysiology (DOP), in which single-molecule events are monitored optically without any electrical connections. Single-molecule sensing of small molecules, macromolecules, and biomacromolecules was subsequently demonstrated. As a further extension, a fingertip-sized, multiplexed chip with single-molecule sensing capabilities has been introduced, which suggests a new concept of clinical diagnosis using disposable nanopore sensors. DOP, which is universally compatible with all types of channels and a variety of fluorescence imaging platforms, may benefit diverse areas such as nanopore sequencing, drug screening, and channel protein investigations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。