A critical assessment of the estrogenic potency of benzyl salicylate

对水杨酸苄酯雌激素效力的严格评估

阅读:7
作者:Andreas Natsch, Lu Hostettler, Tina Haupt, Heike Laue

Abstract

Benzyl salicylate (BS) is a natural ingredient of essential oils and a widely used fragrance chemical. A number of in vitro screening studies have evaluated the estrogenic potential of BS with ambiguous results. Lack of dose-response information for the positive control 17β-estradiol (E2) in most studies makes an assessment of the relative potency and efficacy challenging. Notwithstanding this difficulty, BS has been added as the only fragrance ingredient to the list of the first 14 substances to be screened as potential endocrine disruptors by the European Scientific Committee for Consumer Safety (SCCS) and it is included in the Community rolling action plan (CoRAP) of the European REACH regulation to be assessed for the same property. Here we review all literature evidence and present new data to quantify the in vitro potency and efficacy of BS vs. E2 with full dose response analysis in both an estrogen response element (ERE) depending reporter gene assay and in the MCF7 cell proliferation (E-screen) assay. In both assays, very similar results for BS were found. BS is a partial agonist exhibiting 35-47 % maximal efficacy and it is active only close to the cytotoxic concentration. The extrapolated concentration to achieve 50 % efficacy is 21'000'000 higher as compared to E2 in the reporter gene assay. A ca. 36'000'000 higher concentration of BS as compared to E2 is required to reach equivalent partial cell proliferation stimulation in the MCF7 proliferation assay. This potency is significantly below the agonistic activity of known chemicals which cause estrogenic effects in in vivo assays. Importantly, in this study the weak agonistic activity is for the first time directly related to the activity of E2 in a full quantitative comparison in human cell lines which may help ongoing evaluations of BS by regulatory bodies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。