Epidermal microorganisms contributed to the toxic mechanism of nZVI and TCEP in earthworms by robbing metal elements and nutrients

表皮微生物通过夺取金属元素和营养物质促进了 nZVI 和 TCEP 对蚯蚓的毒性作用

阅读:5
作者:Jie Hou, Meirui Yang, Xinyue Wu, Qiqi Chen, Yuqi Lu, Jianying Zhang, Daohui Lin

Abstract

Disrupting effects of pollutants on symbiotic microbiota have been regarded as an important mechanism of host toxicity, with most current research focusing on the intestinal microbiota. In fact, the epidermal microbiota, which participates in the nutrient exchange between hosts and environments, could play a crucial role in host toxicity via community changes. To compare the contributions of intestinal and epidermal symbiotic microorganisms to host toxicity, this study designed single and combined scenarios of soil contamination [nano zero-valent iron (nZVI) and tris (2-chloroethyl) phosphate (TCEP)], and revealed the coupling mechanisms between intestinal/epidermal symbiotic bacterial communities and earthworm toxicological endpoints. Microbiome analysis showed that 15% of intestinal microbes were highly correlated with host endpoints, compared to 45% of epidermal microbes showing a similar correlation. Functional comparisons revealed that key species on the epidermis were mainly heterotrophic microbes with genetic abilities to utilize metal elements and carbohydrate nutrients. Further verifications demonstrated that when facing the co-contamination of nZVI and TCEP, certain symbiotic microorganisms became dominant and consumed zinc, copper, and manganese along with saccharides and amino acids, which may be responsible for the nutritional deficiencies in the host earthworms. The findings can enrich the understanding of the coupling relationship between symbiotic microorganisms and host toxicity, highlighting the importance of epidermal microorganisms in host resistance to environmental pollution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。