Microglial Mincle receptor in the PVN contributes to sympathetic hyperactivity in acute myocardial infarction rat

PVN 中的小胶质细胞 Mincle 受体导致急性心肌梗死大鼠交感神经兴奋过度

阅读:4
作者:Yu Wang, Jie Yin, Cailing Wang, Hesheng Hu, Xiaolu Li, Mei Xue, Ju Liu, Wenjuan Cheng, Ye Wang, Yan Li, Yugen Shi, Jiayu Tan, Xinran Li, Fuhong Liu, Qiang Liu, Suhua Yan

Abstract

Malignant ventricular arrhythmias (VAs) following myocardial infarction (MI) is a lethal complication resulting from sympathetic nerve hyperactivity. Numerous evidence have shown that inflammation within the paraventricular nucleus (PVN) participates in sympathetic hyperactivity. Our aim was to explore the role of Macrophage-inducible C-type lectin (Mincle) within the PVN in augmenting sympathetic activity following MI,and whether NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome/IL-1β axis is involved in this activity. MI was induced by coronary artery ligation. Mincle expression localized in microglia within the PVN was markedly increased at 24 hours post-MI together with sympathetic hyperactivity, as indicated by measurement of the renal sympathetic nerve activity (RSNA) and norepinephrine (NE) concentration. Mincle-specific siRNA was administrated locally to the PVN, which consequently decreased microglial activation and sympathetic nerve activity. The MI rats exhibited a higher arrhythmia score after programmed electric stimulation than that treated with Mincle siRNA, suggesting that the inhibition of Mincle attenuated foetal ventricular arrhythmias post-MI. The underlying mechanism of Mincle in sympathetic hyperactivity was investigated in lipopolysaccharide (LPS)-primed naïve rats. Recombinant Sin3A-associated protein 130kD (rSAP130), an endogenous ligand for Mincle, induced high levels of NLRP3 and mature IL-1β protein. PVN-targeted injection of NLRP3 siRNA or IL-1β antagonist gevokizumab attenuated sympathetic hyperactivity. Together, the data indicated that the knockdown of Mincle in microglia within the PVN prevents VAs by attenuating sympathetic hyperactivity and ventricular susceptibility, in part by inhibiting its downstream NLRP3/IL-1β axis following MI. Therapeutic interventions targeting Mincle signalling pathway could constitute a novel approach for preventing infarction injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。